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Abstract — We combine a previously developed strategy for Fault
Detection and Identification (FDI) with a supervisory controller
in closed loop. The combined method is applied to a model of a
pilot-scale cooling loop of a nuclear plant, which includes Kalman
filters and a model-based predictive controller as part of normal
operation. The system has two valves available for flow control
meaning that some redundancy is available. The FDI method is
based on likelihood ratios for different fault scenarios which in
turn are derived from the application of the Kalman filter. A
previously introduced extension of the FDI method is used here
to enable detection and identification of non-linear faults like
stuck valve problems and proper accounting of the time of fault
introduction. The supervisory control system is designed so to
take different kinds of actions depending on the status of the fault
diagnosis task and on the type of identified fault once diagnosis is
complete. Some faults, like sensor bias and drift, are parametric
in nature and can be adjusted without need for reconfiguration of
the regulatory control system. Other faults, like a stuck valve
problem, require reconfiguration of the regulatory control
system. The whole strategy is demonstrated for several scenarios.

Keywords—Fault Detection and Identification, Supervisory
control, Kalman filter, model-based diagnosis, Model Predictive
Control (MPC)

I INTRODUCTION

Fault Detection and Identification (FDI) and supervisory
control are loosely coupled research fields with many efforts
published in the last two decades. Research in FDI has given
rise to many techniques based on different assumptions and
philosophies. A general introduction to the field can be found
in [1,2,3]. In this paper, the applied FDI strategy belongs to a
set of techniques based on quantitative first-principle models.
Supervisory control is less broad and more intuitive as a field.
In essence, supervisory control is usually set up as a flexible
control level which is able to adjust low-level control systems
on the basis of available information. Such may be changing
performance objectives or awareness of changing process
conditions, including results obtained by FDI. Supervisory
control may include parametric adjustments such as re-tuning
of local controllers or sensor or actuator signal corrections. It
also includes structural changes such as making changes in the
control structure of a plant. The effective coupling of FDI and
supervisory control is still a relatively new area with little real-
life experiences published today [4-5]. In this work, we
therefore present a strategy in which an Kalman filter based
FDI method is coupled with a supervisory controller which
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switches between several, pre-designed control strategies. The
strategy is tested in silico for a pilot-scale cooling loop built at
the Idaho National Laboratory (INL), prior to real-life
implementation and fits into a more general research line aimed
at the construction of design resilient systems [6].

II.  MATERIALS AND METHODS

A.  Simulated system

The simulated system is conceptually similar to a pilot-
scale Machine Condition Monitoring (MCM) test bed
constructed at INL. This pilot-scale plant consists of a water
cooling loop (found in nuclear plants) and allows the
introduction of several faults such as sensor, valve and pump
malfunctions. The structure and parameters were designed so to
mimic the behavior of this plant based on initial experiments
aimed at system identification. For the purpose of this study, a
reduced version of the pilot-scale plant is simulated. This
reduced loop consists of a closed loop with one pump and two
valves, according to the scheme in Figure 1. The pump works
at fixed speed throughout all simulations.
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Figure 1. Scheme of the cooling loop without control system
To simulate the flow rate (Q) in the system, the steady state

(Qss) flow is computed algebraically from the vane positions of
the two valves (vy,v») as follows:

st(t>:Qm,[(vl(r)—vl,m,),(Vl(t)_vl,,awﬂ N

vl‘upp - V],low V],upp -V 1,low



This equation expresses several aspects observed with the
pilot-scale system. First, both valves shut off the flow rate
completely at a degree of opening higher than their minimal
position (resp. at Viow, Vauw). In addition, above a certain
degree of opening, they do not affect the flow rate anymore
(Viwp, Voupp)- In between these positions, the valve positions
have a close to linear effect on the steady state flow rate. The
deviation from linearity is introduced by the parameter a. A
positive value for o (1.2) is used and results in a higher value
for the steady state flow rate compared to a truly linear model.
Figure 2 shows the steady state flow rate as function of the two
valve vane positions. The dynamic response of the flow rate is
modeled as a first order linear response to the steady state flow
rate with time constant 7. Mathematically we write:

do(r) _
v —=0(1)-0(1) 2)

A flow rate measurement (Q.) is taken every second,
subject to random error (eq) as follows:

0,(t)=0(t)+e,(t),e,~N(0,0,) 3)

The valve subsystems are both simulated with the same
model, yet with different parameters. The valves in the pilot-
scale MCM test bed are of the butterfly valve type. For reasons
of safety, the motor axle and valve vane axle are not the same.
Instead, a system of three axles with two couplings makes sure
that disturbances on the valve vane do not transfer completely
to the motor and vice versa. To this end, the two couplings
leave a gap between axles where they interlock. As a result,
when the motor position changes direction, the subsequent
intermediate axle only follows after the motor axle has crossed
the gap. The same holds for the vane axle when the
intermediate axle changes direction. The valve motors have one
speed only in both directions (s, s»). The input signal to each
valve (u;, u) is -1, 0 or 1 for closing, steady and opening
behaviors of the motor position. The movement of the motor is
delayed (delay time: tq, ts») In mathematical terms, the first
valve is described as follows. Its motor axle position is
described by a simple Ordinary Differential Equation (ODE):

dm, (t)
dt

:sl'”l(t_td,l) 4)

For the first valve. the intermediate axle and vane axle
position (i, v;) follow from the following algebraic equations:

il(t):min[max(ml—gmvl, il(t—é)),m1+gmv1}

&)

vl(t)=min[max(il—giyl,v](t—f))), i +gi,1]

where gm: and gn, represent the gaps resulting from the
respective axle couplings and 6 representing an infinitesimally
small time step. Intermediate axle position measurements (ijm)
are taken each second, subject to random error (e;):

il,m(’):il(t)_'_el‘i(t)’el,i(t)NN(Oboi,l) (6)

One needs only to change the respective valve index in the
above equations to obtain the equations for the second valve.

The described valves represent a particular challenge with
respect to regulatory control of the whole system for several
reasons. First, the gaps due to the axle coupling result in strong
hysteresis effects of the backlash type (i.e. piece-wise linear) if
classic PID-like control strategies are used. Second, a changing
deviation exists between the measurement on the intermediate
axle and the vane position which one wants to truly know and
control. Depending on whether the intermediate axle moves
with the motor, this deviation may range from -gm,; to +gum;.
Thirdly, the input signals to the valve are discrete and of
limited range. A conventional control strategy will suffer from
jitter in the control signal as a result with potential negative
effects on the valve conditions. These elements had to be taken
into account prior to the design of a supervisory control
strategy. All parameters and variables of the simulated system
are found in Table 1 together with their description and units.

B.  Kalman filter for the valve subsystems

A Kalman filter is set up for each of the valve separately
and is executed each second. We describe this here for a single
valve using k as the discrete time index. The Kalman filter
essentially consists of prediction and updating equations. For
the valve system, the motor axle position prediction (Xmp)
follows from the motor axle position state estimate:

X, (k+1)=x, (k)+su 7

The predictions of the intermediate axle and vane positions
(Xip, Xvp) follow from conditional algebraic equations:

xi}l,Zmin[max(xm,],(k)—gm, xm(k— 1)) xm’p(k)—f-gm]
xvyl,zmin[max(xl.}p(k)—gi, x, (k=1 )) , xl.}p(k)+g,]

with x;s and x,; the state estimates. The variance of the
motor position prediction (P,) is computed as:

P,=P+G-G’ )

with Py the state estimate variance and G representing the
input noise standard deviation (considered 0 here). We use the
same equations for the intermediate axle and vane position
variance. This is a naive approach as (1) the intermediate axle
and vane positions are correlated when they move along with
their coupled axle and uncorrelated when they do not and (2)
we assume that the couplings between axles are not a source of
noise. However, a complete treatment of the variance-
covariance predictions could be based on a hybrid model yet
this would lead to a high computational load which is to be
avoided for on-line applications. In addition, this naive
approach is shown to work well in this work.



Given an intermediate axle position measurement, yi(k), the
state update for the intermediate axle are written as follows:

ri(k):yi(k)_xi,p(k)
xi,s(k+l)zxi,p(k)+K'ri(k)
P,=P,~K-0;-K'
2
K:PS'I/O’,» (11)

with 1; the prediction error, K the Kalman gain and o; the
measurement variance. Once more, the same equations are
used to update the motor and vane position estimates:

xm S‘(k+l)

x, ,[k+1) (12)
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+
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This is again considered a naive approach as the obtained
measurement only reflects on the position of all axles if all
axles are moving along with each other. The above equations
are executed each time a new measurement is available.

C. Regulatory control system

A control system is setup as follows. A master controller
defines valve movement based on measurement of the flow rate
and a model of the flow rate as function of the valve vane
positions. The master controller makes use of the single valve
indicated by the supervisory controller. This will be valve 1 in
normal situations as it is the fastest valve and has the most
accurate measurement. The controller computes the expected
flow rate (Q,) for the current valve positions first, according to
the equation 1 with o set to 1, thus assuming a linear, static
approximation to the real system. A prediction error (rq) is the
difference between expected flow rate and measurement:

ro(k)=0,(k)-0,,(k) (13)

The prediction error is summed into an integral term at each
time step (ig), similar to the integrative part of a conventional
discrete-time PID controller. With t; the integral time constant:

(k) =ig(k— 1)+ ry(k)/, (14)

Next, one computes the desired valve position by means of
inversion of equation 1 with a set to 1 and the other valve
position set to its current estimate (X,5.) and for a flow rate set
to Qsp(k)+ ig(k) with Qsp(k) the actual setpoint. By means of
the correction term ig(k), the effect of system-model mismatch
is reduced. We write the inversion generally as

vSP,lzf_l(xv,s,Z’QSP+iQ(k)) (15)

with f! meaning the inversion of equation 1. The desired
valve setpoint is now compared to the predicted valve position,
taking delays of the control signal to the first valve into
account. To this end, the prediction equations of the Kalman

filter are iterated to match the time delay. Following this, one
compares the valve setpoint with the predicted vane position. If
the difference is large enough, the control signal is set to +1 or
-1 according to the desired direction of movement. Otherwise,
the valve control signal is set to 0. The difference between
setpoint and predicted position is considered high enough if the
setpoint lies outside of the 3-c confidence limits (approx. 99%
confidence limit) of the valve vane position prediction. By this
logic, one can avoid jitter in the control signal and account for
changing precision of the valve vane position prediction.

D. Simulated scenarios

A total of five scenarios is simulated. The first scenario is
faultless. The initial valves are at 100% opening and at the start
of the simulation, the setpoint is set to 100 gpm. The total
simulated time is 200 seconds. All following scenarios are the
same except for added faults. All faults are introduced at 50
seconds in the simulation. In the second scenario the first valve
gets stuck. In the third scenario, a bias of 10% is introduced in
the first valve measurement. A fourth consists of a drift in the
first valve measurement with a speed of 0.5% per second. The
fifth scenario consists of both valves being stuck. With this set
of simulations, a perfect match exists between simulated faults
and faults available in the fault diagnosis module. While this is
widely recognized as a potential drawback we do not
investigate this particular aspect of the method in this work.

E.  Fault detection and diagnosis

The fault detection and diagnosis method as described in
[4] is applied. This strategy was originally set up for linear
models and linear, additive faults and is based on log-
likelihood ratios following fault parameter estimation. In [7]
this strategy was successfully expanded for other types of faults
including stuck, stiction and drift and was improved by
considering the time of fault introduction as a fault parameter.
In the MCM case, excessive friction will lead to a stuck valve
fault rather than valve stiction. As such, this type of fault is not
be included here. We do include the stuck and drift problems
however and proper identification of fault time introduction.
We stress the essential elements of the method here.

The first step in the FDI method is fault detection. Fault
detection follows from comparing the sum of squared
prediction residuals (SSPR) by the Kalman filter to the 99%
confidence level limit of the corresponding y* distribution,
assuming normal operation of the system. A detection occurs
when the SSPR crosses the 99% confidence limit. In our case, a
fault detection is confirmed when 7 tests are positive within the
last 10 consecutive prediction steps.

Following a confirmed fault detection step, the FDI module
collects data of 20 more data samples. Following this,
diagnosis starts. To this end, the last 60 data samples are used
(40 before fault confirmation, 20 after). Each time instant
within this window is considered as a candidate value for the
time of fault introduction. For each of these (60) time instants,
the maximum likelihood for each fault type is evaluated. For
the stuck valve problem, there are no other parameters than the
time of introduction. In contrast, the valve measurement bias
and drift contain one parameter each which is identified for



each considered time of fault introduction. This is a linear
operation, as pointed out in [4,5,7] and can thus be obtained
very fast. Following these identifications, one has obtained the
maximum likelihood for each fault type conditional to the
considered fault introduction time. One selects the scenario
with maximum likelihood along fault introduction time
variable and fault type, thereby completing the FDI step.

F.  Supervisory controller

A supervisory controller is set up to accommodate results
from fault detection and from fault diagnosis. The supervisory
controller keeps the control strategy with the first valve as long
as no fault is confirmed. When a fault is confirmed, a safety
mode is activated in which both valves are opened. This is
considered a safe operation in a cooling context as it results in
maximum cooling capacity. This safety mode is held as long as
no conclusive fault diagnosis is given. This also results in
movement of the valve -except when it is stuck- and assists in
obtaining informative data about the nature of the fault [7].

Following fault diagnosis, several actions can be taken. For
bias and drift faults, a so-called parametric adjustment is
executed. That is to say that the respective measurement is
corrected for the identified fault. E.g. the identified bias is
subtracted from the received measurement. Following this, the
control strategy which used the first valve to control the flow is
reinstated, bringing the system back to normal operation. We
note that the method also allows automatic adjustment if the
bias or drift are removed again. Indeed, the removal of bias or
accumulated drift will appear as a bias which can be identified
again and adjusted for as demonstrated in [4]. For a stuck
valve, such parametric adjustment is not sufficient since the
first valve is now useless for control of the flow rate. For this
reason, another control strategy is activated in which the
second, less performing valve (slower, less accurate), is used to
control the flow. To compute the second valve position
setpoint, the first valve position is assumed to be the identified
stuck position. This action by the supervisory controller is
structural in nature and allows to mitigate a complete failure of
the first valve. In such case, it is possible to obtain faults in the
second valve as well, both parametric faults or complete
failure. While the parametric faults can still be mitigated, a
complete failure of both valves cannot be mitigated with the
proposed supervisory controller. In such an event, the
supervisory controller maintains the safety mode and alarms
the operator or systems higher in the control hierarchy. We
note that the developed method does not include an automated
strategy to go back to the original control strategy if the first
valve is functional again, e.g. following maintenance.

G. Performance evaluation and comparison

The proposed supervisory control system is evaluated by
means of the Integral Time Absolute Error (ITAE) computed
over the simulated time in each of the simulated scenarios. This
ITAE is also evaluated for two other strategies which are
reduced forms of the proposed one. A first alternative consists
of the complete supervisory controller except for structural
adjustments, i.e. as if the second valve does not exist. A
second alternative system consists of the FDI method and
includes the safety mode controller. Irrespective of fault

identification, the first valve is kept in use, i.e. no parametric or
structural adjustment is made to the regulatory control system.

III.  Resurts

A. Scenario 1: Faultless system

Figure 2 shows the results for a normal, faultless simulation
of the system. The valve position measurements can hardly be
discerned from the true values and as is the case for the
confidence bounds on valve position estimates by the Kalman
filter after just a few seconds. Furthermore, a true flow of 102.5
gpm is reached at about 70 seconds in the simulation by
manipulation of valve 1 and remains thereafter. This offset is
due to the jitter-avoiding control strategy as explained in
section 2.C. Valve 2 remains completely open.
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Figure 2. Scenario 1 - Faultless operation. Cross-hairs indicate
measurements. Full lines indicate true value and dashed lines indicate 5-sigma
confidence bounds of the Kalman state estimate. Top: valve 1 intermediate
axle; middle: valve 2 intermediate axle; bottom: flow rate.
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Figure 3. Scenario 2 — Valve 1 stuck. Cross-hairs indicate measurements.
Full lines indicate true value and dashed lines indicate 5-sigma confidence
bounds of the Kalman state estimate. Vertical lines indicate the times of fault
confirmation (full) and fault diagnosis (dashed). Top: valve 1 intermediate
axle; middle: valve 2 intermediate axle; bottom: flow rate.

B. Scenario 2: Valve 1 stuck

Figure 3 shows results for the second scenario, in which the
first valve gets stuck at 50 seconds in the simulation. At 61
seconds, this fault is confirmed. One observes the deviation
between measurements and Kalman confidence bounds clearly.
The supervisory controller switches to safety mode instructing



both valves to open. Since the first valve fails to do so, the fault
is correctly identified easily at 81 seconds. Following this
correct identification, the supervisory controller switches to the
control strategy using the second valve. Measurements of valve
1 are discarded beyond this point. A flow of 112 gpm is now
reached at about 170 seconds in the simulation. The offset is
larger as the jitter-avoiding controller deals with a less precise
position estimate, due to larger noise in the valve measurement.

C. Scenario 3: Valve 1 bias

The results for the valve measurement bias are shown in
Figure 4. Here, the fault is detected at time 57 seconds and
correctly identified at 77 seconds. In between these two steps,
valve 1 opens following the switch to a safety control strategy.
After fault identification, the measurement fault is corrected for
and the normal control strategy is resumed. A flow of 102.45
gpm is reached, similar to the faultless scenario at 130 seconds
in the simulation. Obviously, the safety procedure which opens
valve 1 delays the time by which the setpoint is reached.
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Figure 4. Scenario 3 — Valve 1 bias. Cross-hairs indicate measurements. Full
lines indicate true value and dashed lines indicate 5-sigma confidence bounds
of the Kalman state estimate. Vertical lines indicate the times of fault
confirmation (full) and fault diagnosis (dashed). Top: valve 1 intermediate
axle; middle: valve 2 intermediate axle; bottom: flow rate.

D. Scenario 4: Valve 1 drift

The valve drift scenario results are shown in Figure 5. Here, the
fault is confirmed at 66 seconds, followed by correct
identification at 86 seconds. As with the bias fault, the valve
opens during the period in between due to the activated safety
control strategy. Following fault identification, a parametric
correction is executed and the original control strategy is
resumed. One can observe that the correction is not perfect as
the measurement remains to drift, yet at a slower pace. This is
because the drift slope is harder to estimate than a bias. The
remaining drift is however not large enough to trigger a
detection. A flow of 102.5 gpm is reached at about 110 seconds
and then remains. Thus, despite the imprecision of the drift
parameter estimate, the setpoint can be reached.

E. Scenario 5: Valve 1 and valve 2 stuck

Figure 6 shows the results for the scenario in which both
valves get stuck. The stuck valve problem for valve 1 is
recognized first at 62 seconds, followed by correct
identification at 82 seconds. Then, the supervisory controller

switches to the second control strategy, thereby trying to use
valve 2 for flow control. This also fails as it is stuck as well. At
94 seconds it is confirmed and at correctly identified at 114
seconds. Now, the supervisory controller cannot switch to any
viable control strategy. It therefore remains in safety mode and
alarms the higher level in the control structure (not shown).
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Figure 5. Scenario 4 - Valve 1 drift. Cross-hairs indicate measurements. Full
lines indicate true value and dashed lines indicate 5-sigma confidence bounds
of the Kalman state estimate. Vertical lines indicate the time of fault
confirmation (full) and fault diagnosis (dashed). Top: valve 1 intermediate
axle; middle: valve 2 intermediate axle; bottom: flow rate.

1004

i 1%]

Ry

50+

1001

i, 1%]

50+

= 200

o
2100
e

0

0 50 100 150 200

Time [<]

Figure 6. Scenario 5 - Valve 1 and 2 stuck. Cross-hairs indicate
measurements. Full lines indicate true value and dashed lines indicate 5-sigma
confidence bounds of the Kalman state estimate. Vertical lines indicate the
times of fault confirmation (full) and fault diagnosis (dashed). Top: valve 1
intermediate axle; middle: valve 2 intermediate axle; bottom: flow rate.

F. Comparison with reduced supervisor alternatives

We compare the proposed supervisory control strategy with
two reduced alternatives for the 5 simulated scenarios. We refer
to the complete strategy as strategy 1. The strategy without
structural adjustments is called strategy II and the strategy
without supervisory control as strategy III. Table 2 shows the
resulting average Integral Time Absolute Error (ITAE)
computed on the basis of the measured flow rate. In scenario 1
(no fault), there is no effect of the supervisory control choice
on the ITAE, as expected. For scenario 2, a positive effect is
seen when choosing the complete supervisory control system
(strategy 1) over strategy II and III. This is again expected as a
stuck valve can only be mitigated with a structural adjustment.
For scenarios 3 and 4, it can be seen that either strategy I or II
deliver the same, optimal, performance, as they both permit the



desired parametric adjustments. Finally, for scenario 5, none of
the alternative supervisory control strategies is able to mitigate
both valves being stuck, resulting in the highest ITAE values

and critical evaluation for a simple benchmark system.” Comp. Chem.
Eng., 35, 806-816.

across the table. TABLE II. SIMULATED MODEL PARAMETERS AND VARIABLES
Symbol Description ‘ Value ‘ Unit
TABLE 1. INTEGRAL TiME ABSOLUTE ERROR (ITAE) FOR DIFFERENT SCENARIOS Model parameters
AND SUPERVISORY CONTROL STRATEGIES.
o Flow rate exponent 1.2 [-]
Strategy Scenario
7 5 3 4 3 T Flow rate time constant 2 [s]
I 4555 | 8141 6107 | 5523 | 98.78 Gi1. G2, 6o | Noise standard deviations 125 | e :
1I 45.55 98.78 61.07 55.23 98.78 Emls Em2 Gaps at motor and intermediate axle 1,1 [%]
11 45.55 98.78 61.51 61.82 98.78 i1, 82 Gaps at intermediate and vane axle 2,2 [%]
CONCLUSIONS S1, S Valve speeds 1,9.8 [%%/s]
. . . . ows Valow Valve | ffect limit 20, 10 %
In this paper, a supervisory control strategy is evaluated in Vidows Vi alve Tower etfect s %]
silico prior to on-line application with a pilot-scale plant Vi Vaup | Valve upper effect limits 70,20 [%]
mimicking a secondary cooling loop of a nuclear power plapt. tun faz Valve delays 2.2 is]

The supervisory control system aims at the proper choice

between a set of control strategies based on the continuous Qunax Maximum flow rate 240 | [gpm]

assessment of the condition of each of the available valves. A Model variables

Kalman-based strategy is used for timely fault detection and - —

R . . . Measurement error in valve position and flow N
diagnosis of the wvalve subsystems. Following this Gl iz €Q | o rements [%]
identification, the supervisory controller permits both o Valve intermediate axle positions %]
parametric adjustments as well as structural changes in the b P °
regulatory control structure. The complete strategy enables to m;, my Valve motor axle positions [%]
respond adequately to a variety of disturbances such as noise, . Valve input signals [
faults and failures thereby contributing to improved resilience -
of the studied system. As such, conventional control, Vi, V2 Valve vane positions [%]
parametric adjustments and At the same time, the limitations of Q.05 Q Flow rate: actual, steady state and [epm]
the supervisory controller are shown in a scenario in which " | measurement value
both valves get stuck and no further structural changes with the Kalman filters and regulatory control system
given actuating and sensing equipment is possible. Gi Intermediate axle noise standard deviation [%]
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